If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35d^2+45d=0
a = 35; b = 45; c = 0;
Δ = b2-4ac
Δ = 452-4·35·0
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(45)-45}{2*35}=\frac{-90}{70} =-1+2/7 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(45)+45}{2*35}=\frac{0}{70} =0 $
| 1/8w=44 | | F(3D)=4x+1 | | 12.73+.06=13.48-14x | | 3x+8-4x=25 | | .5(18b+6)+64=180 | | -4+p=8 | | 15q+13q-18=10 | | 6u+3u=(+3)u=u | | 1010-5v=50 | | 3^x+4=300 | | f/12=36 | | 8x-7=x+16 | | 5x-7=3x+5+2x | | .5+8m=-11 | | 2a-5×(a=+1)= | | (x+8)+x+(x×2)+4=64 | | 17g+3g-14g=12 | | y=15(2.5)+1/2(-9.8)(2.5)^2 | | -2y+5=y-4 | | 4x^4+7x^2+16=0 | | 2a−1=2a+2 | | -2/n=1 | | 23=2/5n+7 | | 1/4(12+d=13 | | 22+24.5x=47+18.25x | | x-17+7x+15=180 | | x+2684=x-284 | | x-17=7x+5 | | 7x+2=4+2x | | 9a+14=11a-2 | | x+x+19=37 | | x+x+19=78 |